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Figure 1. LuxRemix enables interactive light editing of indoor scenes. Our method decomposes complex scene lighting into one-light-at-
a-time (OLAT) sources and ambient lighting, which can be remixed for relighting effects. In the top right, we apply our method to single
images, where we can change lights and their colors. LuxRemix also enables multi-view-consistent harmonization of the decomposed lighting
across multi-view images. By combining these capabilities, we enable real-time relighting of indoor scenes using 3D Gaussian splatting.

Abstract

We present a novel approach for interactive light editing in
indoor scenes from a single multi-view scene capture. Our
method leverages a generative image-based light decomposi-
tion model that factorizes complex indoor scene illumination
into its constituent light sources. This factorization enables
independent manipulation of individual light sources, specif-
ically allowing control over their state (on/off), chromaticity,
and intensity. We further introduce multi-view lighting har-
monization to ensure consistent propagation of the lighting
decomposition across all scene views. This is integrated into
a relightable 3D Gaussian splatting representation, provid-

* Joint advising

ing real-time interactive control over the individual light
sources. Our results demonstrate highly photorealistic light-
ing decomposition and relighting outcomes across diverse
indoor scenes. We evaluate our method on both synthetic
and real-world datasets and provide a quantitative and qual-
itative comparison to state-of-the-art techniques. For video
results and interactive demos, see luxremix.github.io.

1. Introduction
Controlling lighting in indoor scenes is fundamental to pho-
tography, cinematography, and virtual production workflows.
Professional photographers carefully adjust individual light
sources to achieve desired aesthetic and functional lighting

1

https://luxremix.github.io/


conditions. However, this fine-grained control is typically
lost after capture: images and 3D reconstructions bake light-
ing into the recorded appearance, making post-capture light-
ing adjustments difficult or impossible. Enabling flexible
post-capture editing of individual light sources in multi-view
captured scenes dramatically expands creative possibilities
for photographers, filmmakers, and digital artists, allowing
them to refine lighting decisions after the fact or explore al-
ternative lighting configurations without physical recapture.

Existing approaches to scene relighting face signifi-
cant limitations. Data-driven methods require dense multi-
lighting captures under controlled conditions, which is im-
practical for real-world indoor scenes and offers limited
generalization [6, 10]. Optimization-based inverse rendering
can decompose scenes into geometry, materials, and light-
ing, but remains computationally intensive and often fails to
produce plausible results when lighting conditions change
significantly [65, 83]. Recent prior-driven approaches lever-
age pretrained diffusion models for relighting, but focus
primarily on objects [40, 90], portraits [15], or simple scenes
under distant illumination [51]. Indoor scenes present unique
challenges: spatially varying illumination from multiple near-
field sources creates complex lighting interactions that are
difficult to decompose and edit, especially when selectively
switching individual lights on or off. Moreover, existing
single-image methods [58] cannot maintain 3D consistency
across multiple viewpoints, limiting their applicability to
multi-view reconstructions.

We present LuxRemix, a novel approach for interactive
light editing in indoor scenes from a single multi-view cap-
ture. Our method decomposes the complex lighting of an
indoor scene into individually controllable light sources, en-
abling users to interactively adjust the intensity and color
of each light or switch it on or off entirely. The approach
operates in three stages: first, we leverage our proposed gen-
erative image-based light decomposition model to separate
the contribution of each light source; second, we propagate
these decompositions consistently across all views using
our multi-view lighting harmonization; third, we train a re-
lightable 3D Gaussian splatting representation that enables
real-time interactive manipulation of individual light sources
from any viewpoint.

Unlike existing methods that treat lighting as a global
property or focus on distant illumination, our approach mod-
els spatially varying global illumination from multiple near-
field sources in complex indoor environments. While prior
work on single-image lighting decomposition [58] provides
individual light control, it cannot ensure consistency across
multiple views. Conversely, multi-view relighting methods
[1, 67] achieve 3D consistency but require controlled multi-
lighting captures or produce only global relighting effects
without per-light control. Our method bridges this gap by
combining the fine-grained control of single-image decom-

position with the 3D consistency of multi-view methods.
The key insight enabling our approach is that modern

diffusion models encode rich priors about indoor lighting
that can be leveraged for decomposition, while multi-view
geometric constraints provide the necessary consistency to
propagate these decompositions across views. By formulat-
ing lighting decomposition as a multi-view harmonization
problem and encoding the results in a fast, differentiable 3D
representation (3D Gaussians), we achieve both high-quality
per-light control and real-time interactive performance.

Our main contributions are:
1. A single-image lighting decomposition model to factorize

complex indoor scene lighting into individually control-
lable light sources.

2. A multi-view lighting harmonization method to ensure 3D
consistency of the individual light source decompositions
across all captured viewpoints.

3. Encoding the decomposed, consistent lighting in a re-
lightable 3D Gaussian splatting representation, enabling
real-time interactive manipulation of individual near-field
light sources from novel viewpoints.

4. A large-scale synthetic dataset of 12,000 generated indoor
scenes with ground-truth per-light decompositions.

2. Related Work

There are three major approaches for editing scene lighting:
(1) data-driven methods that require dense multi-lighting
capture with limited generalization; (2) optimization-based
inverse rendering that can be fragile for complex scenes; and
(3) prior-driven methods that fine-tune pretrained models
on task-specific data. We focus on prior-driven approaches
for robustness and generalization. This research direction
has gained momentum over the last year, with most relight-
ing work focusing on humans [15, 95], objects [40, 90], or
simple scenes [51, 55] under distant illumination. Scene
relighting is more complex due to spatially varying illumi-
nation that is challenging to edit, e.g., to selectively switch
lights on or off after the fact.

2.1. Inverse Rendering and Image Decompositions
Inverse rendering recovers scene geometry, materials, and
lighting from images, enabling relighting and image edit-
ing. Traditional optimization-based approaches [54, 65, 83]
leverage differentiable rendering but are computationally
intensive and may lack plausibility when lighting changes.
Recent neural and diffusion-based approaches have shown
promising results, particularly for single images.

Single-image inverse rendering. Early work on intrinsic
decomposition [13, 30] separated images into shading and
albedo components, which was later extended by diffusion-
based approaches [57, 78, 92] that jointly estimate intrinsic
layers and enable material-aware synthesis. For complex
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indoor scenes, methods have progressively improved from
recovering shape, lighting, and SVBRDF [47, 48, 64] to
using vision transformers [102] and diffusion models [46,
51] for more robust decomposition.

Multi-view inverse rendering. Multi-view methods can
reconstruct more accurate geometry and appearance than
single-view inverse rendering, but require multi-view input.
Early approaches learned volumetric reflectance representa-
tions [6] and pre-integrated lighting networks [10, 17], while
differentiable rendering enabled extraction of meshes with
physically-based materials [34, 64, 65, 83]. Recent work has
expanded to unconstrained captures [11, 25, 50], large-scale
scenes [49, 101], and practical scenarios including near- and
far-field sources [27], low dynamic range inputs [54], and
physics-based indirect illumination [18, 21].

Single-view lighting decomposition and editing. Light-
ing decomposition and editing enables flexible workflows
where lighting is manipulated after capture [12, 62]. Ein-
abadi et al. [24] provide a comprehensive survey of deep
neural models for illumination estimation and relighting.
While latent-based methods [5, 84] achieve complex relight-
ing effects, they lack detailed control over individual light
sources. LightLab provides parametric control over individ-
ual light source intensity and color by fine-tuning diffusion
models on photograph pairs [58]. Our aim is to extend this
capability to multi-view captured scenes.

2.2. Image- and Video-based Relighting

Prior-driven relighting approaches involve training or
fine-tuning a pretrained model on large datasets with
(pseudo-)ground-truth relighting pairs. This allows the
model to learn lighting priors and appearance changes un-
der varying illumination, often generalizing well to unseen
scenes, especially when fine-tuned on real-world data.

Single-image relighting. Recent diffusion-based methods
enable detailed lighting control for object relighting, in-
cluding DiLightNet [90], Neural Gaffer [40], and IC-Light
[95]. For portrait relighting with environment maps, meth-
ods range from light stage training [66, 93] and 3D-aware
representations [60, 72] to physics-driven architectures [42]
and diffusion models trained on synthetic faces [15]. How-
ever, environment maps assume distant illumination, which
is unrealistic for indoor scenes. Relighting without envi-
ronment maps can leverage the background image as a ref-
erence [73, 80]. For outdoor scenes, methods range from
self-supervised inverse rendering [89] to shadow prediction
via learned ray-marching [31] or conditional diffusion mod-
els [45]. For indoor scenes, diffusion-based methods en-
able explicit control via light source parameters [58] or user
scribbles [19], while Careaga and Aksoy [14] combine path-
tracing with neural rendering for physically-based relighting.

Video relighting. Extending image relighting to video
introduces temporal consistency challenges, as frame-by-
frame application produces lighting and appearance flicker.
Training-free approaches [99] adapt image models [95] with
cross-frame attention, while end-to-end methods [61, 91]
leverage video diffusion models trained on hybrid synthetic-
real datasets. To avoid error accumulation in two-stage
pipelines, DiffusionRenderer [51] uses G-buffers to decou-
ple inverse and forward rendering, while UniRelight [35]
jointly estimates albedo and synthesizes outputs in one pass.

Multi-view relighting. Multi-view relighting methods
leverage geometric information to achieve 3D consistency
and novel view synthesis. Early methods used proxy geome-
try from multi-view stereo with geometry-aware networks
[23, 67]. NeRF-in-the-Wild [59] and GaRe [3] use appear-
ance embeddings for varying illumination, which lacks ex-
plicit relighting control. Recent diffusion-based approaches
synthesize multi-illumination data from single-illumination
captures [69] or relight input images before reconstruction
[1, 55, 97], avoiding brittle inverse rendering optimization.

2.3. 3D-Consistent and Real-time Relighting
Gaussian splatting for inverse rendering. 3D Gaussian
splatting [41] has been extended to inverse rendering, ad-
dressing challenges in normal estimation and occlusion via
regularization [52], ray tracing [28], or hybrid representa-
tions [87]. Methods also tackle global illumination [16],
diffusion-guided material decomposition [22], and special-
ized effects including inter-reflections [32, 53] and radiance
transfer [56, 77, 100], for high-quality relighting results.

Multi-view harmonization and consistency. Multi-view
harmonization addresses the challenge of reconciling incon-
sistent illumination, appearance, and motion across captured
views to enable accurate 3D reconstruction and relighting.
For extreme illumination variation, Alzayer et al. [1] use
diffusion models to harmonize inputs to a reference illu-
mination before reconstruction, overcoming limitations of
prior methods on specular objects. LightSwitch [55] incorpo-
rates material guidance for consistent multi-view relighting.
CAT3D [29] and SEVA [98] generate consistent novel views
for harmonization and reconstruction, while SimVS [79]
handles real-world inconsistencies by training on synthetic
data that simulates illumination variation and scene motion.

Real-time relightable representations. Neural render-
ing approaches combine multi-view stereo geometry with
learned material and illumination representations for inter-
active relighting [68]. 3D Gaussians have recently emerged
as a powerful representation for real-time rendering and re-
lighting of 3D objects and scenes, including precomputed
radiance transfer [94], BRDF decomposition [7, 28, 39],
diffusion-guided estimation [22], and neural features [26,
56]. Recent advances enable real-time global illumination
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Figure 2. Overview. Given a multi-view capture of an indoor scene, we apply our single-image lighting decomposition model to generate
one-light-at-a-time (OLAT) decompositions. We propagate these decompositions across all views using multi-view lighting harmonization
with geometric constraints. Repeating this for each light source yields a complete multi-view OLAT dataset. We train a relightable 3D
Gaussian splatting representation on these decompositions, enabling real-time interactive control over each light from any viewpoint.

with multi-bounce lighting [36]. Avatar-specific methods
[75, 76, 81] and outdoor scene methods [3] leverage domain
knowledge for specialized relighting. However, most meth-
ods require controlled multi-view OLAT capture rather than
casual captures.

3. Multi-view Light Editing
Our goal is to decompose the complex lighting of an indoor
scene into individually controllable light sources given a
single multi-view capture. This enables users to interactively
adjust the intensity and color of each light or switch it on
or off, with view-consistent results. Figure 2 provides an
overview of our three-stage approach. First, we train our
single-image lighting decomposition model for per-view
generative light decomposition (Section 3.2). To achieve
this, we generate a large-scale synthetic dataset with ground-
truth per-light decompositions (Section 3.1), enabling us
to fine-tune pretrained diffusion models that encode rich
priors about indoor lighting. Second, we propagate these
decompositions consistently across all views using multi-
view geometric constraints through a lighting harmonization
framework (Section 3.3). Third, we encode the decomposed
lighting in a relightable 3D Gaussian splatting representation
that enables real-time rendering and interactive manipulation
of individual light sources from any viewpoint (Section 3.4).

3.1. Synthetic Multi-Light Data Generation
A key component of our method is the synthetic multi-light
dataset used to train our single-image lighting decomposi-
tion and multi-view harmonization models. We start with
12,000 procedurally generated 3D models of indoor scenes
[2], augmenting each scene with procedurally generated light
sources using Infinigen [71] with up to six controllable lights
in total. This includes ceiling, wall, floor, and table lamps,
as well as environment lighting [44, 70]. The emitted light

Fully lit scene Light mask

Light config 1 Light config 2

Ambient lighting OLAT 1

OLAT 2 OLAT 3

Figure 3. Synthetic multi-light data example. We generate 10,000
synthetic 3D scenes with procedurally generated light sources. For
each scene, we render equirectangular images for multiple lighting
conditions, including fully lit, randomly lit, and separate ambient
and one-light-at-a-time (OLAT) configurations. This dataset allows
us to train high-quality models to decompose scene lighting into
individual light sources. Our models train on perspective views
sampled from these equirectangular images.

source colors are sampled from black-body color tempera-
tures to cover a spectrum of white light and augmented with
10% HSV variations to cover a wider range of colors.

We render each scene using Blender’s Cycles renderer [9]
with all lights on and in multiple one-light-at-a-time (OLAT)
configurations, where all lights except one are switched off.
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Input Mask 1 Mask 2 Mask 3 Mask 4
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Figure 4. Single-image Lighting Decomposition. Given the light masks in the top row, our single-image lighting decomposition model
realistically decomposes the scene lighting in the input image (on the left) into four individual one-light-at-a-time (OLAT) light sources.

To enable flexible viewpoint sampling during training, we
render each scene as four equirectangular HDR images at
roughly eye height rather than pre-rendering all possible
perspective views, allowing us to sample diverse camera
views on the fly while avoiding the high upfront rendering
cost. For each light source, we generate three types of masks
to guide the light editing process: (1) the light source area
mask, computed from pixels with emissive materials only
(dilated if too small); (2) the mask of the complete light
fixture; and (3) the convex hull of the light fixture mask. For
further details, please see the supplement. Figure 3 shows
examples of our synthetic multi-light data with various light
configurations.

3.2. Single-image Lighting Decomposition
Given a single input image of an indoor scene, Iinput, we
decompose the lighting into ambient lighting, Iambient, and
multiple one-light-at-a-time (OLAT) light sources, Ii, that
can be edited individually:

Iinput = tonemap
(
Iambient +

N∑
i=1

ci · Ii
)

. (1)

The OLAT images are determined up to scale, requiring
RGB scale factors ci to recreate the input lighting.

We fine-tune a pretrained image editing DiT model us-
ing LoRA [37] to enable flexible light editing given the
additional spatial prompt of the light selection mask, to de-
compose the input image into Iambient and OLAT passes Ii.
Our LoRA fine-tuning enables the DiT to focus on two light
editing tasks: 1) OLAT decomposition using text instruc-
tions like “switch off all lights except the selected one” to
generate an edited image with isolated individual light contri-
bution; and 2) Turning off the light by prompting the model
to “switch off only the selected light” to show the scene illu-
minated by all remaining sources, which we treat as ambient

lighting. To condition the model on which light to edit, we
patchify the light mask and tokenize it via a single-layer
MLP, then channel-wise add these tokens to the reference
tokens alongside the input image features. To train these
models, we use light composition to augment the training
data by dynamically combining multiple OLAT images. Fig-
ure 4 shows single-image lighting decomposition results. We
also prompt OLAT decomposition with “high/medium/low
brightness” (matching EV0, EV-2, EV-4 of the target HDR
OLAT) to help the model better learn light transport and
capture a wider dynamic range.

3.3. Multi-view Lighting Harmonization
While existing methods can decompose lighting in single im-
ages or generate consistent multi-view imagery from scratch,
no prior work addresses the challenge of propagating light-
ing decompositions across multi-view captures. This novel
task requires both understanding the 3D scene geometry
and maintaining photometric consistency while transferring
complex lighting from conditional views to input views.

Given multi-view input images where lighting has been
decomposed in one or more views, we aim to propagate
the lighting consistently across all remaining views. Our
approach takes as input the multi-view images with par-
tial lighting decompositions along with their corresponding
Plücker ray embeddings, and produces multi-view images
with harmonized lighting across all views. Inspired by recent
multi-view diffusion methods like CAT3D [29], SimVS [79],
and SEVA [98], we follow the latter’s approach to propagate
lighting consistently while preserving geometric consistency.
Similar to SimVS, we concatenate the original input views
and sparse light-decomposed views along with the corre-
sponding Plücker ray embeddings and reference view masks
to the pretrained multi-view diffusion U-Net, and perform
full-parameter fine-tuning of the U-Net. Please refer to the
supplement for more details.
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Figure 5. Multi-view Lighting Harmonization. We use the first input image to decompose the scene lighting into multiple one-light-at-a-
time (OLAT) light components and the ambient lighting (highlighted in blue), which includes all unseen light sources and environment
lighting. LuxRemix can turn on all three lamps for the top scene and turn off either lamp for the bottom scene. We then propagate these
lighting components consistently across all views using the multi-view input images (top row). Sources: Zip-NeRF [4], VR-NeRF [86].

To generate high dynamic range (HDR) outputs, we run
the lighting harmonization process three times with different
exposure levels for each lighting condition (“high, medium,
low” from Section 3.2). For each view and lighting condition,
we then merge the three exposure-bracketed images to create
the final HDR output following Debevec and Malik [20].
This per-light HDR reconstruction allows us to maintain the
full dynamic range of the scene while ensuring consistent
lighting across all viewpoints. Figure 5 shows our multi-view
lighting harmonization results.

3.4. Real-time Remixable Lighting in 3D
We encode the decomposed lighting into a relightable 3D
Gaussian splatting representation that enables real-time
rendering and interactive manipulation of individual light
sources from any viewpoint (see Figure 6). Building upon
3D Gaussian splatting [41], we extend each Gaussian with
per-light HDR RGB coefficients, storing the appearance con-
tribution from each light source (including ambient lighting)
separately. At render time, we linearly combine these per-
light contributions with user-controlled light intensity or
color to produce the final appearance under arbitrary lighting
configurations. This representation preserves the real-time

Figure 6. Real-time Remixable Lighting. The top left image shows
the original scene lighting. All other images show new lighting
conditions created interactively under varying viewpoints.

rendering capabilities of standard 3D Gaussian splatting
while enabling independent control over each light source.

We optimize this representation in two stages. First, we
pretrain a standard 3D Gaussian splatting model [88] on the
original multi-view input images to establish the geomet-
ric structure and spatial distribution of Gaussians. Second,
we freeze all geometric and appearance parameters, then
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introduce and optimize per-light RGB coefficients for each
Gaussian using the decomposed multi-view lighting images.
We train these coefficients in linear HDR space with differ-
entiable tone mapping, jointly solving for per-Gaussian and
per-light color scaling factors that ensure the recombined
lighting matches the original input images. Our training uses
an L1 loss for the individual per-light images and an L1 com-
position loss for consistency with the original input views.

4. Evaluation

To quantitatively evaluate our single-view lighting decompo-
sition and multi-view lighting harmonization models, we use
30 synthetic test scenes held out from training. We evaluate
our models on this test set using PSNR, SSIM, and LPIPS
[96] after channel-wise color rescaling w.r.t. the ground truth.

4.1. Single-Image Lighting Decomposition
We compare our LuxRemix-SV model for single-image light-
ing decomposition against two baseline methods: Scribble-
Light [19], a diffusion-based approach for scribble-guided
lighting editing, and Qwen-Image [82], a general-purpose
image editing foundation model. We also evaluate several ab-
lations of our model. The ‘FLUX token’ variant is fine-tuned
as an in-context LoRA [38] by concatenating the input image
and mask side-by-side as tokens. The ‘SD’ variant uses a U-
Net-based latent diffusion model [74]. Our final LuxRemix-
SV model uses channel-wise token addition where the mask
is processed by a single-layer MLP to match the FLUX VAE
latent dimensions, then added to the input condition image
latents. Similar to the ‘FLUX token’ variant, we use LoRA
for parameter-efficient fine-tuning.

Table 1 and Figure 7 show results for our single-image
lighting decomposition model, which successfully isolates
individual light contributions by switching off all lights ex-
cept the selected one. Existing image editing models lack
precise per-light control capability while our final method
achieves the best performance across all metrics. Figure 8
shows a qualitative comparison of our LuxRemix-SV model
with the baseline methods for light editing.

4.2. Multi-View Editing/Harmonization
Figure 5 shows qualitative results of our multi-view light-
ing harmonization model, which successfully propagates
lighting consistently across all views. We also quantitatively
compare our LuxRemix-MV model against two ablations
in Table 2: 1) LuxRemix-SV processes each view indepen-
dently without multi-view context, and 2) LuxRemix-MV-
Edit, which extends LuxRemix-MV with additional light
masks to perform mask-guided multi-view editing, instead
of lighting harmonization from sparse reference views. The
metrics demonstrate the necessity of our LuxRemix-MV
model.

Table 1. Evaluation of Single-Image Lighting Decomposition.
We compare our method and variants against baseline approaches
on 30 synthetic test scenes.

Method PSNR ↑ SSIM ↑ LPIPS ↓
ScribbleLight [19] 14.39 0.395 0.688
Qwen-Image [82] 18.23 0.714 0.237

Our variants
FLUX token [8] 25.20 0.865 0.101
SD [74] 27.13 0.857 0.099

LuxRemix-SV 27.68 0.898 0.082

Input Qwen-ImageScribbleLight

FLUX token (ours) Ours GTLight Mask

SD (ours)

Figure 7. Qualitative Single-Image Lighting Decomposition.
Given an input image and light mask, we compare various meth-
ods for isolating individual light sources. Ground truth is shown at
the bottom right. Existing methods fail to accurately decompose
lighting, while ours performs best overall.

Table 2. Evaluation of Multi-View Lighting Harmonization. We
compare our method against ablations on 30 synthetic test scenes.

Method PSNR ↑ SSIM ↑ LPIPS ↓
LuxRemix-SV 25.14 0.807 0.149
LuxRemix-MV-Edit 26.37 0.794 0.136
LuxRemix-MV 30.76 0.867 0.091

4.3. Real-time Remixable Lighting

Figure 6 shows our real-time remixable lighting results. Prior
works do not provide the necessary level of fine-grained
lighting control for interactive 3D scenes. Approaches like
NeRF-W [59] and Splatfacto-W [85] can relight scenes at
a per-image level when trained on multi-illumination cap-
tures, but lack per-light control. Text-based editing methods
like Instruct-NeRF2NeRF [33] offer general scene editing
but are also too imprecise. In contrast, our method enables
interactive control over individual light sources with real-
time feedback. Please see our supplementary material for
our video results.
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Input Image ScribbleLight [19] Qwen-Image [82] LightLab [58] LuxRemix-SV (ours) Ground Truth

Figure 8. Comparison of Single-Image Light Editing. Given an input image (left) and a light mask, we compare our results with baseline
methods for switching lights on and off. ScribbleLight [19] struggles to produce plausible lighting. Qwen-Image [82] shows great zero-shot
image editing capabilities, but sometimes adds or removes lights or reflections as there is no mask conditioning. LightLab [58] sometimes
struggles with light and object reflections. Our LuxRemix-SV model produces convincing results throughout. Image source: LightLab [58].

5. Conclusions and Limitations

We introduced LuxRemix, the first method for multi-view
lighting decomposition and remixing for indoor scenes. Our
approach combines a single-image lighting decomposition
model with multi-view harmonization to produce view-
consistent per-light decompositions from arbitrary multi-
view captures. By training on a large-scale synthetic dataset
with ground-truth OLAT decompositions, our models learn
to isolate individual light contributions and enable flexible
relighting control. We further introduce a real-time remix-
able lighting representation based on 3D Gaussian splat-

ting that allows users to interactively manipulate individual
light sources, adjusting their intensities and colors from any
viewpoint. Our method opens new possibilities for interac-
tive scene editing, virtual production, and immersive experi-
ences, where fine-grained control over lighting is essential
for achieving photorealistic results. We believe this work
establishes a foundation for future research in controllable
multi-view scene lighting.

While introducing a significant step towards consistent,
multi-view scene relighting, our approach has remaining lim-
itations. First, our models are trained exclusively on static
synthetic indoor scenes and may not generalize well to out-
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door or dynamic scenes. Second, the limited diversity of
light sources in our training data introduces some bias in
the lighting decomposition, tending to favor light cones over
more diffuse lighting configurations. Third, distant global il-
lumination editing via HDRIs is not supported by our model,
which is left for future work.
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LuxRemix: Lighting Decomposition and Remixing for Indoor Scenes
Supplementary Material

This supplemental document provides additional details for
LuxRemix. We first describe the data preparation process
in Section 6, then introduce additional details about our
models in Section 7, and finally provide additional results
and comparisons in Section 8.

Please see our project website https://luxremix.github.io
for the following additional supplemental material:
• Interactive Lighting Blend Explorer:

A browser-based demo for interactive single-image light
editing based on our lighting decompositions.

• Single-Image Lighting Decomposition:
Shows the decomposition of seven light sources and their
flexible recombination for various relighting effects.

• Multi-View Lighting Harmonization:
Visualizes the decomposition and harmonization of multi-
ple light sources across multiple views.

• Real-time Remixable Lighting:
Screen recordings from our modified Splatfacto renderer
in the Nerfstudio viewer demonstrating our interactive re-
lighting with 3D Gaussian splatting. Note that temporarily
lower rendering resolutions are due to the dynamic resolu-
tion rendering implemented in the Nerfstudio viewer.

6. Data
Here we provide additional information for how we created
the training data for LuxRemix. We render scenes from
Avetisyan et al. [2] with procedurally generated light sources
using Infinigen [71] into many one-light-at-a-time (OLAT)
equirectangular images. We choose equirectangular 360°
images to save on the rendering cost and allow dynamic
sampling of diverse perspective camera viewpoints on the fly
while training the model. Please see Table 3 for a comparison
of the rendering and storage costs.

Table 3. Rendering and storage comparison. The perspective
views are rendered at resolution 512×512 pixels, and the equirect-
angular 360° images are rendered at resolution 2048×1024 pixels.
64 samples per pixel are used for Blender’s Cycles path tracer [9].

Setup Render time Storage

20,000 perspective images 140,000 sec 17.2 GB
1,000 360° images 27,000 sec 6.8 GB

= 19% = 40%

Rendering scenes once. To reduce our dataset size while
maintaining flexibility during training, we store equirectan-
gular 360° images instead of pre-rendering a large collection
of perspective views that our model ingests. Equirectangu-
lar representations compactly encode the full scene from

a single viewpoint, allowing arbitrary camera perspectives
to be sampled on the fly. In contrast, storing every possi-
ble perspective image incurs significant storage overhead
and limits viewpoint diversity at training time. For example,
training on 20K pre-rendered perspective images with res-
olution 512×512 pixels would require 17.2 GB of storage.
Instead we could store 1K equirectangular images with a
resolution of 2048×1024 pixels in just 6.8 GB and sample
these from new viewpoints on the fly, assuming we can al-
ways sample at least 20 distinct views per equirectangular
image. This design substantially reduces disk usage and data
preparation cost while preserving the ability to generate di-
verse, view-consistent training inputs dynamically. We found
it particularly useful to render the dataset once and use the
stored data for the entire project.

Implementation details. As described in Section 6, we
use Blender’s Cycles renderer [9] to generate equirectangu-
lar HDR images for each synthetic room. For each room,
we sample four distinct locations to capture equirectangu-
lar images at a resolution of 2048×1024 pixels. Rendering
is performed with 64 samples per pixel (spp), using the
OptiX denoiser to enhance path-traced results. We used ap-
proximately 2,800 GPU hours on NVIDIA A100s to render
the complete dataset. In total, we rendered 49,600 different
equirectangular views across 12,400 synthetic rooms. The
additional depth map and light mask are rendered for each
360° image to assist effective perspective view sampling.
Combining all different light passes, the total dataset size is
about 4.5 TB.

On-the-fly sampling. As our model is designed for regular
perspective views, during training, the perspective views are
sampled from the rendered equirectangular 360° images. For
single-image light editing, we sample perspective views such
that the target light source is visible within the field of view
(FOV). Specifically, we use the equirectangular light mask
to select a visible light source, and then use its center to
guide the sampling range of azimuth and elevation for the
perspective projection.

For multi-view lighting, after selecting an initial perspec-
tive view that contains the target light source within the field
of view, we sample additional perspective views to incremen-
tally increase the overall coverage of visible regions. These
views are drawn from multiple source equirectangular 360°
images and are chosen to ensure that consecutive views share
overlapping regions, promoting consistency across frames.
To guide this sampling, we project depth maps from the vari-
ous equirectangular images into a global coordinate system,
allowing us to accurately identify co-visible areas within
the room. Additionally, depth information is used to avoid
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Figure 9. Overview of our models for (a) single-view lighting decomposition, and (b) multi-view lighting harmonization.

sampling views that are too close to scene geometry or the
camera, ensuring a diverse and meaningful set of training
perspectives.

After sampling the perspective views, we generate train-
ing data pairs on-the-fly. For the OLAT decomposition
task, we select a target OLAT image Itarget and its corre-
sponding full-light image Ifull, forming the training pair
(Ifull, Itarget). For the one-light-off task, we compute Ione-off =
Ifull − ctarget · Itarget, where ctarget is the scaling factor for the
target OLAT image as indicated in the rendering metadata.
The resulting pair (Ifull, Ione-off) teaches the model to turn
off the selected light source. To further augment the training
set, we perform additional lighting composition by loading
multiple OLAT images and adding them to the full-light
image. This produces new, well-lit image variants such as
I ′full = Ifull+

∑N
i=1 c

′
i ·Ii, enriching the diversity of the train-

ing data. To preserve the high dynamic range of the original
images when converting to the sRGB color space for model
training, we apply AgX tone mapping1 to the sampled linear
images, which has been shown to be effective in preserving
more realistic highlight effects.

7. Models

7.1. Single-image Light Editing – LuxRemix-SV
Our single-image editing model builds upon a pretrained
text-based image editing diffusion transformer (DiT) with
an architecture similar to FLUX.1 Kontext [8]. Because full-
parameter fine-tuning is prohibitively expensive, we adopt
LoRA [37] for efficient lightweight adaptation. Importantly,
the base DiT model already demonstrates strong capability
for general instruction-based image editing (see Figure 11),
which allows LoRA fine-tuning to specialize the model for
the light editing task using only limited synthetic training
data, and generalize to real-world images using the gener-
ative prior inherent in the base DiT model. Figure 9a illus-
trates the model design.

We use LoRA fine-tuning for two closely related light
editing tasks: (1) OLAT decomposition and (2) turning off

1https://github.com/EaryChow/AgX

the target light. Below are the instruction templates we used
for the two tasks:
1.“{trigger word: OLAT}. Darken the room to a night scene:

eliminate all light sources and window light. The only
light source should be the selected {light type}, on at
{low,medium,high} brightness, according to the selection
mask.”

2.“{trigger word: LTOFF}. Only turn off the selected {light
type}, according to the selection mask. Keep the remain-
ing light sources unchanged.”

We use two distinct trigger words to differentiate between
the two closely related tasks. For the OLAT decomposi-
tion task, we further specify the desired brightness level

“{low, medium, high} brightness”, for the target light source.
Specifically, we instruct the model to generate LDR OLAT
images corresponding to approximate exposure values of
EV–4 (low), EV–2 (medium), and EV0 (high) relative to the
HDR target after tone mapping. This approach encourages
the model to better learn light transport and enables recon-
struction of HDR OLAT images through multi-exposure
fusion [20]. Figure 10 shows two examples of our additional
brightness level control.

Other than text prompts, we also provide the light mask
as a spatial prompt for the model. The mask is processed
by a single-layer MLP to match the DiT’s input latent di-

Input Low Brightness Medium Brightness High Brightness

Figure 10. LuxRemix-SV’s OLAT decomposition with the control
of different brightness levels.
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mensions, then added to the input condition image latents.
This additional single-layer MLP is fine-tuned along with
the LoRA parameters to further improve the model’s ability
to understand the light mask.
Training details. We insert LoRA adapters into all atten-
tion blocks of the DiT model, using a LoRA rank of 32.
Fine-tuning is performed for 3,000 iterations with a batch
size of 192, leveraging the Prodigy optimizer [63] for adap-
tive learning rate adjustment and bias correction. Training
was conducted on 48 NVIDIA A100-40GB GPUs, complet-
ing in approximately 12 hours.

7.2. Multi-view Harmonization – LuxRemix-MV
Our multi-view harmonization model extends the lighting
decomposition from single to multiple views. While it is
possible to use the single-view LuxRemix-SV model for
multi-view propagation (e.g., by processing diptychs or grids
of images), this becomes computationally infeasible for large
image sets due to high resource demands. To address this,
we use a scalable multi-view diffusion model based on a
pretrained U-Net architecture (similar to CAT3D [29] and
SEVA [98]) for efficient multi-view lighting propagation.

The base model is pretrained to generate novel views
given a few reference images. However, our task does not
require synthesizing entirely new views; instead, we have ac-
cess to multi-view input images prior to lighting decomposi-
tion, and our goal is to propagate the lighting decomposition
from sparse reference views to all other output views. To
accomplish this, we concatenate the original input views and
the sparse light-decomposed views, together with the corre-
sponding Plücker ray embeddings and reference view masks,
as inputs to the pretrained multi-view diffusion U-Net, by
extending the model’s channels of the input projection layer,
as illustrated in Figure 9b. To distinguish between OLAT
decomposition and one-light-off editing, we also include
a binary mask in the input condition: all zeros for OLAT
decomposition, and all ones for one-light-off editing.
Training details. We conduct full-parameter fine-tuning
of the U-Net for 30,000 iterations. The training progresses
in three stages: For the first 15,000 iterations, the model
is trained on 4-view input batches of size 192. In the next
10,000 iterations, the number of input views is increased to
8, with a batch size of 144. Finally, during the last 5,000
iterations, the model is further trained with 15-view input
batches of size 96. We utilize the AdamW optimizer [43]
with a learning rate of 5×10−5. Training is performed on 48
NVIDIA A100-40GB GPUs and completes in approximately
28 hours.
Inference details. Our model is fine-tuned to handle up
to 15 views per forward pass. To accommodate larger multi-
view datasets, we employ a sequential multi-pass strategy.
The core idea is to process images in batches while main-
taining consistency by conditioning on both the original

reference views and previously generated frames. Let U de-
note the set of unprocessed target frames and P the set of
processed frames. We use a distance metric d(Ii, Ij) based
on camera pose similarity to guide the selection process:
• Pass 1: We select target frames from U that are spatially

closest to the original source reference views R∗.
• Pass k > 1: We iteratively select remaining frames from
U that are closest to any frame in the processed set P .

For each pass, we construct a dynamic reference set Rk that
always includes the original source references R∗. Addition-
ally, if a target frame is selected due to its proximity to a
previously generated frame Iprev ∈ P , we optionally include
Iprev as a secondary reference in Rk. This approach allows
the model to “chain” visual information from source views
to distant targets, ensuring that subsequent passes remain
consistent with the lighting decomposition established in
earlier steps.

7.3. Gaussian Splatting with Lighting Control
Following the two-stage training pipeline described in Sec-
tion 3.4, we extend the 3D Gaussian splatting model [41]
to enable precise lighting control. We achieve this by fitting
per-light RGB parameters for each Gaussian, utilizing the
light-decomposed multi-view images.
Stage 1: Pretraining a standard 3DGS. We first estab-
lish the scene’s geometric structure by training a standard
3D Gaussian splatting model on the original multi-view im-
ages using gsplat [88]. Upon convergence, these pretrained
Gaussians serve as the basis for incorporating additional
parameters for lighting control.
Stage 2: Fitting per-light RGB parameters. We augment
each Gaussian from the previous stage with a set of learn-
able lighting parameters Li∈RM×3, where M denotes the
number of decomposed light sources (including ambient
lighting). Modeled in a linear HDR space to represent the
physical accumulation of light, these parameters allow us to
render the image for a specific light source m, denoted as
Îm, via standard rasterization using the Gaussians’ existing
geometry and the new learnable lighting parameters. We
optimize these per-light RGB parameters as follows:
1. Joint Optimization: We jointly optimize the per-light

RGB parameters L alongside the shared geometry pa-
rameters. This step refines the pretrained Gaussians’ ge-
ometry and appearance to better align with the light-
decomposed multi-view images. We train the Gaussians
in this step for 4,000 iterations.

2. Light Fitting (Frozen Geometry): To prevent the model
from explaining lighting residuals by altering geometry,
we freeze all geometric parameters and focus solely on
optimizing L to fit the light-decomposed images for the
remaining 2,000 iterations.

Training Objectives. The optimization in Stage 2 incor-
porates three losses: one for the fidelity of individual light
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Input Image Light Mask FLUX.1 Kontext [8] Qwen-Image [82] Nano Banana LuxRemix-SV (ours)

Figure 11. Additional Comparisons of Single-Image Light Editing. Given an input image and a light mask (left), we compare our light
editing results with baseline methods for switching lights on and off. FLUX.1 Kontext [8] sometimes removes or modifies image details.
Qwen-Image [82] sometimes removes lights entirely. Nano Banana produces plausible light edits. Our LuxRemix-SV model produces
convincing results throughout with fine-grained controllability over individual light intensities and colors. Image source: Pexels.
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Input Image Light Mask 1 Light Mask 2 Qwen-Image [82] Nano Banana LuxRemix-SV (ours)

Figure 12. Comparisons of Single-Image Light Editing with Multiple Masks. Given an input image and two light masks (left), we compare
our light editing results (right) with baseline image editing models. While Qwen-Image [82] and Nano Banana enable basic prompt-based
light editing, only our LuxRemix-SV approach enables realistic and fine-grained light editing control via light mask conditioning. Image
sources: Pexels and Unsplash.

renderings, one for the consistency of the recombined light-
ing, and one for the spatial smoothness of the Gaussian
parameters.

The first term is the photometric loss between the ren-
dered light image Îm and the ground-truth light image Im:

Lolat =
1

M

M∑
m=1

(
∥Îm − Im∥1 + λLD-SSIM(Îm, Im)

)
.

(2)
The second term is a composition consistency loss be-

tween the recombined lighting Îcomp =
∑

m wmÎm and the
original input image Iori, where wm is a learnable per-light
scaling factor for light recombination. This ensures that the
learned lighting coefficients, when recombined, accurately
reconstruct the original appearance:

Lcomp = ∥T (Îcomp)− Iori∥1, (3)

where T (x) = (x + β)
1
γ is a differentiable tone mapping

function with a learnable gamma γ and offset β.

The third component is a spatial smoothness loss. To mit-
igate high-frequency noise where adjacent Gaussians learn
divergent light responses, we impose a spatial smoothness
regularizer based on K-Nearest Neighbors (KNN). For each
Gaussian i, we penalize the deviation of its lighting coeffi-
cients from its K nearest spatial neighbors N (i):

Lsmooth =
1

NK

N∑
i=1

∑
j∈N (i)

∥Li − Lj∥22. (4)

This encourages local consistency in light reflectance, help-
ing to reduce sparkling artifacts during relighting. We apply
this loss every 100 optimization iterations after the initial
4,000 iterations.

The final objective is the weighted sum of three losses:

L = Lolat + λcompLcomp + λsmoothLsmooth. (5)

After training, we can randomly blend multiple per-light
renderings from the same set of Gaussians to get consistent
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Figure 13. Additional Multi-view Lighting Harmonization Results. We use the first input image to decompose the scene lighting into the
ambient lighting and multiple one-light-at-a-time (OLAT) light components (highlighted in blue for each scene). We then propagate these
lighting components consistently across all views using the multi-view input images (top row). Source: VR-NeRF [86].
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relighting results. We include screen recording videos in the
supplement to show our interactive relighting with 3DGS.

8. Additional Results and Comparisons
8.1. Single-Image Lighting Editing
We show additional editing results in Figures 11 and 12.
In Figure 11, we show results of switching lights off and
on, with various light colors. The baseline comparisons to
FLUX.1 Kontext [8], Qwen-Image [82] and Gemini 2.5
Flash Image a.k.a. Nano Banana show prompt-based editing
results trying to match our results. Figure 12 shows more
advanced editing results with two editable light sources and
a mixture of out-of-distribution light shapes and novel colors.
In the supplemental material, we include a video demonstrat-
ing the decomposition of seven distinct light sources, and
recombining them in many different ways.

8.2. Multi-view Lighting Harmonization
Figure 13 shows additional multi-view lighting harmoniza-
tion results. Note how our single-view model LuxRemix-SV
can recover individual OLAT lights with plausible shadows
for the plant in the top scene. Our multi-view harmonization
model LuxRemix-MV then propagates these single-view
lighting decompositions consistently across views. For the
middle scene, our model can cleanly disentangle the three
hanging lights. And for the bottom scene, our model can
switch on the standing lamp in the center of the scene (see
“OLAT 3”). Note also that the ambient lighting in this scene
correctly includes the out-of-view ceiling lights.

8.3. Failure cases
Figure 14 shows some failure cases of our single-image light
decomposition and editing method. In our synthetic training
data, the shape of the light spread is biased towards conical
shapes, which does not always match real-world lights. In
multi-light images, our lighting decomposition sometimes
fails to adhere to the provided light mask. Using a different
random seed can result in different OLAT decompositions.

Input image Ground truth Our relighting result

Input image Light mask OLAT (seed 1)

Input image Light mask OLAT (seed 2)

Figure 14. Failure cases. We show some failure cases of our light
decomposition and editing method. Top: the shape of the light
spread is biased towards conical shapes, which does not align
with the ground truth. Middle: in multi-light images, our lighting
decomposition sometimes fails to adhere to the provided light
mask. Bottom: starting from a different random seed can result in
different OLAT decompositions.
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